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Eigenlayer is a novel protocol that extends Ethereum’s proof of stake security for other
services through restaking. Currently, the risks and the returns of restaking are in the
speculative phase as Eigenlayer smart contracts are under active development and the
risk and reward parameters are largely unknown. In our research, we modeled restak-
ing after Ethereum (PoS) staking with higher risk parameters and simulated the returns
for the restakers validating 1-50 Actively Validated Services (AVSs). We incorporated
both correlated slashing risks among the AVSs and correlation penalties similar to that
of Ethereum in our simulations. We show both theoretically and experimentally that
the expected return and the standard deviation for the restakers grow approximately lin-
early with validating more AVSs, suggesting a convergent Sharpe ratio and a limited
probability of loss. Within our simulation parameters, the probability of loss remained
at 0.73% even when validating up to 50 AVSs. However, potential losses during black
swan events scale with the number of AVSs validated. In addition, we built a model
where slashing risk of each AVS scales with the number of AVSs an operator is vali-
dating, demonstrating a tangible risk of cascading, recursive slashing events. Based on
these findings, we propose Affine Restaking Risk Engine–an AVS selection framework
and an optimal set of restaking strategies: 1) Risk-averse restakers should limit their
exposure to black swan events by carefully selecting a smaller set of AVSs (up to 10),
2) restakers with higher risk appetites should aim to maximize expected returns by
validating as many AVSs with similar risk profiles as possible. 3) Care should be taken
to keep the slashing of each AVSs isolated, to avoid a potential cascading N-slashing
event that could be catastropic.

* Affine Protocol team brings together blockchain, quantitative finance, research, and technology experts from
YCombinator, Meta, Goldman Sachs, BitGo, MIT, and Harvard.
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1 introduction

Eigenlayer [1] is an innovative, novel protocol operating on top of the Ethereum blockchain. It
introduced the concept of restaking, an extension of delegated proof-of-stake that allows Ethereum
stakers to secure multiple blockchains or services simultaneously. This mechanism facilitates a
security marketplace where smaller protocols can tap into Ethereum’s robust validator set, boot-
strapping their operations without incurring the overhead of independent validator networks.

We can broadly categorize the key components of Eigenlayer as follows:

1. Restakers: These are the individuals or entities who have staked ETH, either directly or
through liquid staking derivatives. Restakers have the option to restake their ETH via Eigen-
layer to provide additional security to services, earning rewards and points in exchange.

2. Actively Validated Services (AVSs): These are applications including, but not limited to,
rollups, data availability layers, oracles, or other specialized services that require security
guarantees via consensus. By opting into Eigenlayer, AVSs access Eigenlayer’s pool of staked
ETH.

3. Node Operators: These participants play a pivotal role by choosing which AVSs to support
and actively validate. In return for their service, node operators earn yields from the sup-
ported AVSs. Crucially, node operators face the risk of slashing (loss of staked ETH) due to
misbehavior or failure of validation duties.

4. Liquid Restaking Tokens (LRTs): While not directly a part of the Eigenlayer, LRTs streamline
the process for users to participate in the Eigenlayer. They function as staking pools for
restaking. By depositing ETH into LRTs (for example, eETH [2], ezETH [3], pufETH [4],
etc.), users receive representative tokens. These tokens represent a share in a node operator
network and earn Eigenlayer points, with potential additional rewards offered by the LRT
providers themselves.

1.1 Research Context

It is important to note that restaking yields are currently in a speculative phase. Slashing mecha-
nisms within the Eigenlayer are under development (aimed to be released by Q3 2024), and their
implementation will substantially influence actual yields. Moreover, the correlated nature of the
risk profiles of the AVSs can further impact potential returns.

This research report presents simulation-based analyses that project potential future scenarios
based on various slashing conditions and degrees of interconnection within the restaking ecosys-
tem. The aim is to offer insights into the risk profile associated with restaking as Eigenlayer’s
slashing implementation and participation evolve.

1.2 Outline

The subsequent sections of this report explore:
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• Risk Factors in Restaking: A detailed analysis of the operational, technological, and market-
related risks inherent to restaking participation.

• Simulating Restaking Returns modeling after Ethereum: Explanation of the simulation
methodology, assumptions, and results projecting potential yield scenarios based on different
slashing parameters.

• Framework for AVS Selection A summary of exisiting AVS selection research, and our pro-
posal based on the quantitative methods proposed in this report.

• Limitations of the Study: A discussion of factors influencing the simulations and the poten-
tial deviations between simulated results and real-world outcomes.

2 risk factors in restaking

Currently, restaking rewards on Eigenlayer are effectively risk-free, as slashing conditions have not
yet been implemented within its smart contracts. However, this scenario is expected to change,
and understanding the potential risks associated with restaking is crucial for node operators and
restakers alike. A strong starting point is to examine the established risks and penalties associated
with Ethereum staking.

2.1 Ethereum Slashing Conditions

Ethereum validators can be slashed for actions that compromise network integrity, such as:

• Proposing and signing two different blocks for the same slot.

• Attesting to a block that ‘surrounds’ another one (effectively changing history).

• By ‘double voting’ by attesting to two candidates for the same block.

When a violation is detected, the validator is slashed. When a validator is slashed, they immedi-
ately lose 1/32 of their staked ETH (up to a maximum of 1 ETH), which is permanently removed
from circulation. The validator also begins a 36-day removal period during which their remaining
stake gradually decreases due to ongoing inactivity penalties. [5]

At the midpoint of the removal period (Day 18), the validator receives an additional penalty that
scales with the total amount of staked ETH from all validators slashed within the 36 days sur-
rounding the event. This “correlation penalty” ensures that mass slashing events are punished
more harshly, potentially resulting in the loss of a validator’s entire stake. [5] In contrast, isolated
slashing incidents incur significantly less severe penalties.

In general, Slashing events for Ethereum have been rare and less than 0.04% of the active ETH
validators have been slashed. [6]
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2.2 Implications for Restaking Risks

Eigenlayer’s model has a different risk profile for restakers when compared to traditional Ethereum
staking. The slashing conditions for individual AVSs will determined by themselves, resulting in
the following implications:

• Correlated Slashing Risk: Restakers face amplified risk from unintentional errors, technical
failures, or malicious behavior. Since a restaker’s staked ETH backs multiple AVSs, a sin-
gle misstep could trigger slashing penalties from numerous sources at once. This creates a
cascading effect where the consequences of an incident can be more severe than in isolated
staking scenarios in Ethereum.

• AVS-Specific Risk: The nature of Eigenlayer could attract AVSs that cannot secure a dedi-
cated validator set by themselves. These AVSs might be incentivized to take on greater risks,
operating under the assumption that they can rely on borrowed capital via restaking. This
risk-taking behavior could increase the likelihood of security breaches or technical failures
that may trigger slashing events for restakers supporting those AVSs.

• AVS-Specific Correlation Penalties: Similar to Ethereum’s correlation penalty, Eigenlayer
could see implementations where the severity of individual slashing events increases pro-
portionally to the number of other restakers or node operators slashed within a specific
timeframe. This interconnectedness means a widespread incident affecting multiple AVSs
could result in disproportionately harsh penalties for all involved restakers, even those with
no direct fault in the triggering event.

3 simulating restaking returns

To explore the potential impact of slashing risks on restaking returns within Eigenlayer, we con-
ducted simulations based on a simplified model that draws inspiration from Ethereum staking.
It’s essential to remember that this simulation is intended to illustrate broad trends and highlight
the significance of correlated risks under various scenarios. Real-world outcomes may vary as
Eigenlayer’s slashing implementations and the AVS landscape evolve.

3.1 Simulation Setup and Assumptions

Our simulation operates under the following assumptions:

1. 10x Slashing Risk: Each AVS has a 0.4% probability per year of slashing a validator, a rate
that is 10 times the observed frequency on Ethereum to highlight the potential impact of
amplified risk.

2. Ethereum Identical Penalty: The slashing penalty is 1 ETH for every 32 ETH staked, mirror-
ing Ethereum’s initial slashing penalty.
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3. High Correlation (50%) Risk: The probability of simultaneous slashing events across AVSs
is modeled with a pairwise correlation coefficient (ρ) of 0.5. This indicates a high degree of
interconnectedness between AVS security incidents.

4. Adjusted Correlation Penalty: For each slashing event, the validator incurs a correlation
penalty proportional to the total number of slashings within the surrounding 36-day period.
This penalty is capped at 50% of the validator’s stake and is triggered only when the network
experiences more than 2 slashings during the surrounding 36-day period. This penalty is
less harsh than Ethereum’s correlation penalty, in which case the validator may lose all of their
funds. In Eigenlayer, we expect the AVSs to slash more, so an overly harsh correlation penalty
will disproportionately affect the validators. Figure 1 shows the curve used for imposing
correlation penalty.
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Figure 1: A validator may lose up to 50% of their staked funds due to Correlation Penalty.

We simulate scenarios where a single validator supports N different AVSs, with N being 1, 10, 30,
or 50. Each AVS offers a fixed return of 0.5% per year. Simulations are run for one year to analyze
the final annual yield distribution for the validator. A yield lower than zero indicates a loss.

Two sets of simulations are conducted:

• No Correlation Penalty: Validators are subject only to the initial slashing penalty for misbe-
havior.

• Correlation Penalty Present: In addition to the initial penalty, validators face increasing
penalties based on the total number of validators slashed within a specific timeframe.

3.2 Technical Details

We simulated restaking returns 3000 times for one validator validating different numbers of AVSs
either with or without correlation penalty. We ran the simulation one day at a time for one year
(365 days). This is longer than Ethereum’s epoch length of 6.4 minutes. We chose a longer epoch to
save on computation and because we didn’t observe a noticeable difference in the restaking returns
with shorter epoch lengths. In every simulation, we assumed the network to have 200 validators
in total, and the simulations were implemented in Pytorch [7] with a batch size of 75 simulations.
The simulations took approximately 1 hour to run on an Nvidia T4 GPU instance on Google Colab.
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4 simulated results

4.1 Simulations without Correlation Penalty
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Figure 2: Simulated distribution of Restaking returns for a single validator validating 1, 10, and 50 AVSs
(without Correlation Penalty). The top plot shows the results in the linear scale and the bottom
plot shows the same results in the log scale (for better visibility). A small number of simulations
ended in negative returns for the validator.

In section 8, we show that the expected return from validating N AVSs is N times the expected
return from validating 1 AVS. In contrast, the standard deviation of the returns grows only√
ρN2 + (1− ρ)N ≈ √

ρ ·N times.1 In Figure 3, we observe that a validator’s expected return
and the standard deviation of the returns in the simulations match with the theoretical values very
closely, verifying the accuracy of our simulations. Table 1 summarizes our findings.
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(c) Risk of loss

Figure 3: Simulated returns from restaking for a single validator validating 1-50 AVSs (without Correlation
Penalty). Validating a large number of AVSs does not increase the probability of loss proportion-
ally.

We also showed in section 8 that the risk of loss for validating any number of AVSs has an upper
limit lower than 1. With our simulation parameters, this theoretical upper limit of loss is

ρ · s2Var (S1)
(−sE [S1] + E [Y1])2

=
0.5 · (1/32)2 · 365 · 0.004/365 · (1− 0.004/365)

(−1/32 · 365 · 0.004/365+ 0.005)2
≈ 8.22%

1 ρ is the pairwise correlation between the slashing events of the AVSs. In our simulations, ρ was 0.5.
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In other words, regardless of how many AVSs a validator validates, the risk of making a negative
return is never more than 8.22%. The theoretical upper limit of loss is not tight and we observe in
Figure 3c that the actual probability of a loss from the simulations is merely 0.72%.

Intuitively, this upper limit can be understood by noticing that both the standard deviation of re-
turns and the expected return grow approximately linearly with N. Consequently, the Sharpe ratio
approaches a constant, and thus validating many AVSs is not proportionally riskier in expectation.
Mathematically, due to the constant Sharpe ratio, Chebyshev’s Inequality gives that the area under
0 must be small and bounded.

Nonetheless, it’s important to note in Figure 6 that during the black swan events, a validator’s
maximum possible loss increases significantly by validating a larger number of AVSs. When many
AVSs slash the staked funds simultaneously, the validator’s losses can be substantial.

Number of AVSs Expected APY STD of APY Risk of loss (%)
1 0.49 0.20 0.39

10 4.87 1.50 0.72

30 14.60 4.60 0.71

50 24.35 7.06 0.72

Table 1: Simulated returns from restaking over one year without correlation penalty.

4.2 Simulations with Correlation Penalty
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(b) 10 AVSs
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Figure 4: Simulated distribution of Restaking returns for a single validator validating 1-50 AVSs (with Cor-
relation Penalty). The top plot shows the results in the linear scale and the bottom plot shows
the same results in the log scale (for better visibility). A small number of simulations ended in
negative returns for the validator.

Under the correlation penalty model, each slashing event incurs an additional penalty based on
the total number of validators slashed within a specific timeframe. As illustrated in Figure 1, a
small number of isolated slashings do not trigger the correlation penalty. However, in scenarios
with many coordinated slashing events, a validator could lose up to 50% of their staked assets.
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Figure 5: Simulated returns from restaking for a single validator validating 1-50 AVSs (with Correlation
Penalty). The correlation penalty slightly increases the Risk of loss.

In the simulations, we observe that even with a correlation penalty, a validator’s expected return
and the standard deviation of the return increase almost linearly with validating more AVSs.

While the risk of loss increased slightly under this model, we did not observe significantly more
loss due to correlation penalties. We suspect several reasons behind this. Firstly, the slashings are
assumed to be rare events with 0.004 slashings per AVS per year. Secondly, isolated slashings from
one validator do not incur correlation penalties. Since the correlation coefficient is 0.5, no signifi-
cant large slashing event occurred in a short time frame in the simulations. Hence, the contribution
of the loss from the correlation penalty was minimal. Table 2 summarizes our findings.

Number of AVSs Expected Return STD of Return Risk of loss (%)
1 0.49 0.20 0.41

10 4.87 1.50 0.73

30 14.60 4.54 0.71

50 24.34 7.05 0.73

Table 2: Simulated returns from restaking over one year with correlation penalty.

4.3 Returns during Black Swans

In traditional finance, black swan events denote extremely rare occurrences that can affect the
markets significantly. In this analysis, we define black swans as the tails of return distributions with
a probability of 0.27% or less (analogous to 3-sigma events in traditional finance). In the Eigenlayer
ecosystem, black swans will occur if the validator experiences substantially more slashings than
expected. These can happen either due to the validator’s mistakes or due to some incident affecting
many AVSs within the Eigenlayer ecosystem.

We have executed 3000 simulations with 200 validators. Thus, the resulting dataset contains 200×
3000 = 600, 000 validator return values per scenario – a sufficient sample size for black swan loss
analysis.

In Table 3, we observe that the black swan losses for validators increase significantly with validat-
ing a larger number of AVSs. Furthermore, the correlation penalty doesn’t seem to affect the losses
as much.

These observations suggest a critical trade-off. While validating a larger number of AVSs does
not impact the overall likelihood of loss, it does increase the potential losses during a black swan.
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Figure 6: Simulated loss (%) of staked capital for a validator during a black swan (0.27% probability or less).

Validators with a higher risk tolerance may choose to validate a larger set of AVSs to maximize
their potential returns. However, validators seeking to mitigate black swan losses should carefully
consider the number of AVSs they validate.

Number of AVSs Loss (%) without Corr. Penalty Loss (%) with Corr. Penalty
1 -2.63 -2.63

10 -11.15 -11.13

30 -34.68 -34.08

50 -61.67 -61.90

Table 3: Simulated loss (%) of staked capital for a validator during a black swan (0.27% probability or less).

4.4 Simulation with Ultra High (100x) Slashing Risk AVSs

While we have done this analysis with 10x (0.4% yearly) risk compared to the current Ethereum
ecosystem, given the novelty and maturity level of newer AVSs, it is fair to assume that they will
have varying levels of slashing risk and in some cases, it can be multiple order or magnitude
of risk of Etherereum slashing risk. So, we present an analysis where we assume 0% (current
baseline), 25%, 50%, and 100% of the AVSs being 100x (4.0% yearly) risk compared to the 10x
baseline slashing risk.

Both the low-risk group and the high-risk group of AVSs were assumed to have a pairwise group
correlation of 50%, and an in-between group correlation of 10%. In other words, multiple high-
risk AVSs are likely to slash the validator simultaneously, and similarly, multiple low-risk AVSs are
likely to slash the validator simultaneously. However, two groups of AVSs are unlikely to influence
slashings of each other.

Running similar simulations for the mix, we obtain the following results.

As expected, as the percentage of 100x, high-risk AVSs goes up in this mix, the expected return
goes down–more importantly, the standard deviation (STD) of this return goes up significantly,
indicating volatile return periods and higher frequency of black swan events of significant capital
loss.
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Percentage of
High Risk AVSs 10 Total AVSs 30 Total AVSs 50 Total AVSs

Expected Return STD Expected Return STD Expected Return STD
0% 4.87% 1.50 14.60% 4.54 24.34% 7.05

25% 4.61% 1.87 13.67% 5.67 22.71% 9.24

50% 4.30% 2.70 12.80% 8.02 21.24% 13.34

75% 4.07% 3.46 11.99% 10.67 19.78% 18.04

100% 3.62% 5.12 10.83% 14.55 18.36% 21.66

Table 4: Distribution of simulated return for different percentages of high-risk AVSs

The risk of loss also goes up considerably – from 0.72% to 7.61% when validating 100% high-risk
AVSs as shown in Table 5. However, the risk of loss still does not grow with growing number of
AVSs.

Percentage of 10 Total AVSs 30 Total AVSs 50 Total AVSs
High Risk AVSs Risk of loss (%) Risk of loss (%) Risk of loss (%)

0% 0.72 0.71 0.72

25% 2.76 2.90 3.00

50% 5.12 4.83 4.95

75% 6.12 6.02 6.25

100% 7.43 7.44 7.61

Table 5: Risk of loss % while validating an increasing mix of high-risk AVSs.

This phenomenon can be explained by noticing that the riskiest condition, that is returns for 100%
high-risk AVSs, is identically distributed as the returns for 100% low-risk AVSs but with a higher
risk parameter. Consequently, due to the same mathematical reasons, the probability of loss will
be higher but still bounded and will not grow with validating more AVSs. Because the other rows
are less risky than this condition, their probability of loss will also be bounded.

Nonetheless, the risk of loss is still concerning, and if we consider a generally good Sharpe ratio
guideline of 1, often followed by traditional finance practitioners, we would likely want to limit
the high-risk AVSs in this to 0-50% of the total AVSs.

5 cascading and variable slashing risk analysis

One of the key assumptions during simulations and also during the theoretical analysis was that
the slashing risk of an AVS does not change when it is validated with other AVSs. A 50% correla-
tion ensures that AVSs are likely to slash in conjunction, however, correlation alone does not make
each AVS slash more frequently than it does by itself.

In reality, it is possible that when two AVSs are validated together, they slash more often than they
do when validated individually. An example of this could be an optimistic rollup AVS, which also
depends on a fraud proof AVS–it is possible that when a fraud proof AVS faces a majority slashing,
the rollup AVS could also slash, causing a cascading slashing event. Under this risk model, the
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Figure 7: Theoretical expected return, standard deviation of return, and Sharpe ratio for validating N AVSs
when the slashing risk of each AVS grows linearly when validated with other AVSs. All other
parameters were assumed to be the same as previous simulations.

slashing probability for each AVS grows when it is validated with more AVSs. If this is the case,
then neither the expected return nor the standard deviation of the return will grow linearly. We
show this below with a theoretical proof:

Suppose a validator validates N AVSs together. For each AVS, suppose the slashing probability
is ps(N) per year, which is a monotonic function in N, and the pairwise correlation between the
AVSs is ρ. Assuming the same notations for (Yn)Nn=1, (an)

N
n=1, (Sn)Nn=1 as in the section 8, we can

observe that the slashings, Sn-s, are binomially distributed. Therefore, the expected return from
restaking N AVSs is

E

[
N∑

n=1

−s · Sn + Yn

]
= N · (−sE [S1] + E [Y1]) (1)

Similarly, the variance of restaking returns is

Var

(
N∑

n=1

−s · Sn + Yn

)
≈ s2Var (S1) ·

[
ρN2 + (1− ρ)N

]
(2)

However, note that

E [S1] = M · ps(N)

Var (S1) = M · ps(N) · (1− ps(N))



6 affine restaking risk engine: avs selection framework 13

Both of these terms now depend on N and hence neither the expected return nor the standard
deviation would grow linearly under these assumptions. In Figure 7, we show some plots show-
ing the growth of these terms for different ps(N) functions.

6 affine restaking risk engine: avs selection framework

Given restaking is a nascent primitive and we have virtually no slashing data beyond Ethereum
slashing, there has not been many studies around restaking. However, based on our simulation
and a few existing studies, we present Affine Restaking Risk Engine, a framework for managing
risks for restaking.

6.1 Existing Studies: Gauntlet’s Framework

Recently, Gauntlet [8] published a framework for selecting AVSs. Under this framework, AVS
selection is seen as an optimization problem at each rebalancing step t.

Suppose AVS is the list of live AVSs and O corresponds to the validators associated with an LRT.
According to Gauntlet’s suggestion, the LRT should optimize the following cost function, which
depends on both the returns from the AVSs and the slashing conditions:

max
AVS

g

(∑
o∈O

∑
a∈AVS

wff(ca,o, t) −wss(ca,o, t)

)

subject to some boundary conditions. While analyzing the formula for the full extent is tangential
for our research, we will explain some of the key terms:

• f(·) is a function of the yield from the AVS a and validator o. Similarly s(·) is a function of
the slashing penalties.

• wf and ws are importance given to the yield and slashing loss. From a mathematical per-
spective, these weights could be part of the definition of f and s, and explicit weight terms
were unnecessary.

• ca,o represents the weight of the portfolio of validator o used to stake AVS a.

• g(·) is a function of the overall return.

One important point to note is that we ran our simulations for one validator and not from the
perspective of an LRT. Consequently, in our optimization problem, the double summation above
becomes a single summation over the AVS.

6.2 Affine’s Framework to Optimize Restaking Returns

As of writing this document, slashing penalties have not been implemented in the Eigenlayer
smart contract. Consequently, the Eigenlayer points are risk-free at this moment. However, once
the slashing conditions are implemented, the restakers need to be careful about AVS selection and
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monitoring to optimize their returns. Based on our simulations and Gauntlet’s framework, we
suggest the following optimization functions for investors with different risk appetites.

6.2.1 Investors with High Risk Tolerance

We observed from the simulations that the risk of the loss does not grow with validating more
AVSs while the expected return does. Investors who think the risk of loss is acceptable should
choose to validate as many AVSs as possible. In reality, not all AVSs will have the exact same
slashing probability or the same pairwise correlation. So, the investor should also have a threshold
for maximum slashing penalty (S) from one AVS, minimum yield (Y), and maximum allowed
pairwise correlation (ρmax). Mathematically, this strategy can be written as:

max
AVS

∑
a∈AVS

E [wff(ca, t) −wss(ca, t)]

subject to

wss(ca, t) ⩽ S

wff(ca, t) ⩾ Y

Corr(ai,aj) ⩽ ρmax ∀ai ̸= aj ∈ AVS

6.2.2 Investors Who Want Principal Protection

In our simulations, we also found that the risk of maximum loss during black swan events grows
with validating more AVSs. The investors who want principal protection and minimum loss during
black swan events should only validate a few, carefully selected AVSs. In particular, they should
minimize the probability of a maximum loss −1 < −L < 0. Like before they should still have
thresholds for maximum slashing penalty (S) from one AVS, minimum yield (Y), and maximum
allowed pairwise correlation (ρmax).

Mathematically, their optimization function can be written as:

1− min
AVS

∑
a∈AVS

∫−L

−∞wff(ca, t) −wss(ca, t) dµ

Where µ is the probability measure over the return from restaking at time step t. The boundary
conditions would be

wss(ca, t) ⩽ S

wff(ca, t) ⩾ Y

Corr(ai,aj) ⩽ ρmax ∀ai ̸= aj ∈ AVS

−1 < −L < 0

6.3 General Guidelines to Optimize Restaking Returns

Here are some steps we recommend to all restakers to optimize their returns:
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• Conduct in-depth analysis of an AVS’s operating principles, code quality, audit history, and
track record of security incidents before committing to validate them.

• Understand that the slashing conditions are determined by the AVSs. Scrutinizing the spe-
cific slashing rules and penalties of each AVS before validating them.

• Select validators that demonstrate consistent availability, active participation, and a minimal
history of being slashed.

• For a chosen level of risk tolerance, identify AVS combinations that maximize potential re-
turns while minimizing the probability of loss.

• Be aware that the probability of loss initially increases with the number of validated AVSs,
then stabilizes to be approximately 0.73%.

• There could be heuristics-based slashing conditions, to limit the amount of possible loss in
specific time windows and circuit breakers to potentially even halt the network and use social
consensus to avoid catastrophic losses, while being mindful of the general liveliness of the
network.

• Restakers could also look into insurance products that provide principal protection during
the black swan events in exchange for some of the Eigenlayer yields.

• Recognize that restaking, in extreme circumstances, can lead to complete loss of staked assets.
Implement risk mitigation strategies to limit exposure and protect against the impact of
black swan events. In particular, the novel $bEIGEN token design [9] to use the potential
Intersubjectivity of such black-swan event, could protect the stakers from massive losses.

7 limitations of the simulations

• In the simulation, each AVS is assumed to provide a return of 0.5% per year. In reality, the
AVS returns will have variability, and the returns could be either more or less for many AVSs.
As a result, the mean APY for a validator will also change.

• The slashing risk for each AVS was assumed to be the same, but in reality, the slashing risk
will be different for each AVS.

• Currently the slashing conditions are not implemented in Eigenlayer. We have run the sim-
ulation assuming the slashing penalties will be similar to Ethereum. However, if that is not
the case, these simulations cannot provide any insights.

• When a non-malicious Ethereum validator gets slashed, it’s often due to a software bug,
network error, unsynchronized clock, etc. In those cases, the validator re-joins the network
after some inactivity period. For simplicity, the simulation does not take that into account
and the validator is assumed to re-join the next day.

• The pairwise correlation factor was fixed to be 0.5. However, in practice, different AVSs will
have different levels of correlation. Also, the correlation will vary over time.

• In the simulation, the epoch length was one day instead of 32 blocks. This reduced the
amount of computation by 225x but made the simulation slightly inaccurate.
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8 appendix: theoretical analysis of restaking returns

In this section, we do a theoretical estimation of the number of slashings a validator may experience
by validating a growing number of AVSs. We assume there is no correlation penalty to simplify
the analysis.

Suppose a validator is validating N AVSs (an)
N
n=1 for M epoch with one unit staked capital. In

every epoch, each AVS has an i.i.d. slashing probability of ps, gives a yield y% on unit staked
capital, and every two AVSs ai and aj have pairwise Pearson correlation of ρ. Lastly, assume that
for AVS n, the validator gets slashed Sn times in total during the M epochs and gets a total yield
Yn on the unit capital staked.

8.1 Expected Return from Restaking

First, note that the expected yield of each AVS is identical, hence

E

[
N∑

n=1

Yn

]
= N · E [Y1]

On the other hand, the total number of slashings the validator can expect is the following:

E

[
N∑

n=1

Sn

]
=

N∑
n=1

E [Sn] = N · E [S1]

Suppose the maximum immediate slashing penalty is s. Then, the restaking returns can be written
as

−N · sE [S1] +N · E [Y1] = N · (−sE [S1] + E [Y1])

Thus, the expected return from validating N AVSs is N times the return of validating one AVS.

8.2 Variance of the Restaking Returns

The variance of Y1 is negligible compared to the variance of S1 since the expected number of
slashings by AVS a1 over one year is very small. Thus, the variance of the returns will be dictated
by the variance of the S1.
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Next, we shall compute the variance of the total number of slashings. First, note that Sn-s are
binomially distributed. Therefore,

Var

(
N∑

n=1

Sn

)
=

N∑
n=1

Var (Sn) + 2

N∑
n=1

N∑
k=n+1

Cov (Sn,Sk)

= MNps(1− ps) + 2

N∑
n=1

N∑
k=n+1

ρ ·Mps(1− ps)

= MNps(1− ps) +N(N− 1)ρ ·Mps(1− ps)

= Mps(1− ps)
[
ρN2 + (1− ρ)N

]
= Var (S1) ·

[
ρN2 + (1− ρ)N

]
This is the variance of the total number of slashings. With the slashing penalty factor s, the variance
of the total slashing penalty will have an s2 multiplier to the above formula.

Also, for ρ > 0, this value grows quadratically in N. Therefore, for N large enough and ρ > 0,
the variance of the return while validating N AVSs is approximately ρN2 times the variance of
the return for validating one AVS. Therefore, the standard deviation should be

√
ρN times the

standard deviation of validating one AVS.

8.3 Upper Bound on the Risk of Loss

Chebyshev’s inequality: For a random variable X with finite expectation µ and finite variance σ2,
and for any real number k > 0, the Chebyshev’s inequality gives

P((X− µ)2 ⩾ k2σ2) ⩽
1

k2

We know that for the total restaking returns, we have µ = N · (−sE [S1] + E [Y1]), and σ2 =

s2Var (S1) (ρN2 + (1− ρ)N).

Assuming µ > 0 and applying Chebyshev’s inequality for k = µ
σ gives us,

P((X− µ)2 ⩾ µ2) ⩽
σ2

µ2

=
s2Var (S1) (ρN2 + (1− ρ)N)

N2 · (−sE [S1] + E [Y1])2

=
s2Var (S1)

(−sE [S1] + E [Y1])2
·
[
ρ+

1− ρ

N

]
Using the last inequality, we can obtain an upper bound on the probability of loss:

P(X ⩽ 0) = P(X− µ ⩽ −µ)

⩽ P(X− µ ⩽ −µ) + P(X− µ ⩾ µ)

= P(|X− µ| ⩾ µ)

⩽
s2Var (S1)

(−sE [S1] + E [Y1])2
·
[
ρ+

1− ρ

N

]
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Now note that as N → ∞, the right-hand side converges to a finite value:

lim
N→∞ s2Var (S1)

(−sE [S1] + E [Y1])2
·
[
ρ+

1− ρ

N

]
=

ρ · s2Var (S1)
(−sE [S1] + E [Y1])2

(3)

Now it suffices to show that the right-hand side is less than 1.

Suppose L = E[Y1]

s
√

E[S1]
. We will show that if L > 2, then the right-hand side is less than ρ/(L− 1)2 <

1.

First note that from the properties of the binomial distribution, we have Var (S1) = E [S1] (1− ps).
Additionally, 0 < E [S1] ≪ 1 by assumption.

Therefore,

E [Y1] = s
√

E [S1] + (L− 1)s
√

E [S1]

> sE [S1] + (L− 1)s
√

E [S1]

⩾ sE [S1] + (L− 1)s
√

1− ps

√
E [S1]

This implies

(E [Y1] − sE [S1])
2 > (L− 1)2s2(1− ps)E [S1]

= (L− 1)2s2Var (S1)

Subsequently,
ρ · s2Var (S1)

(−sE [S1] + E [Y1])2
= ρ · s2Var (S1)

(−sE [S1] + E [Y1])2
< ρ · 1

(L− 1)2

For sufficiently large E [Y1], the condition L > 2 is true and thus this upper bound applies.

Note that the values of E [Y1] that make L > 2 are quite realistic and are satisfied by our simulation
parameters. Furthermore, the upper bound from Chebyshev is also very loose. In particular, for
our simulation parameters, the upper bound in Equation 3 is approximately 8.22%, while the
actual probability of loss from the simulation was around 0.72%. This theoretical proof shows that
an upper bound on the risk of the loss exists, it does not depend on N and is less than 1.
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